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New Short Constraint Length, Rate 1/N
Convolutional Codes Which Minimize
Required Ep/N, for Given Bit
Error Rate
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Instead of using the criterion of maximum free distance, df, or the maximum df with
minimizing a few first distance profiles, we searched short constraint length rate 1/N
convolutional codes using a new criterion of minimizing required bit energy-to-noise
density ratio, E, [N ,, for a given value of desired bit error rate (BER ), for the goodness of
a code. The considered channel was binary antipodal signaling over additive white
Gaussian noise and no quantization at the channel output. For the BER calculations, the
fransfer function bounding technigue was used. Partial searches were performed using
some known facts and a very useful new idea that ‘‘good codes generate good codes.”
That is, for a given constraint length K, good rate 1/(N + 1) codes can be found by
extending the code generator matrices of good rate 1/N codes. The code search results are
tabulated for 3 <K < 7and 2 < N < 8 For many pairs of K and N, the new codes are
shown to save 0.1 to 0.4 dB in the required E [N, compared to previously reported
codes. Additionally, the benefits of coding bandwidth expansion are confirmed with our
new codes.
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l. Introduction

»

The use of a short constraint length convolutional code
together with Viterbi decoding has been very popular for
several applications. The class of time-invariant, nonsys-
tematic. rate 1/V convolutional codes has been studied much
more extensively than any other class, partially due to its ease
of analysis. The bit error rate (BER) at the Viterbi decoder
output is well bounded by the well known transfer function
bound (Refs. 1 and 2):

BER < ¢

0
o 37 TWD, 2Z) )]

D=Do' Z=1

where ¢, and transfer function T(D, Z) depend on the code
and the type of channel used. D, which has a value between 0
and 1, is the union-Bhattacharyya distance of the coding
channel (everything inside the encoder-decoder pair). The right
hand side of Eq. (1) is often represented as a series expansion
(Refs. 1 and 2) as
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BER < ¢ * ) 4, D (2)
i=d

f
where df is the free distance of the code.

A large number of good rate 1/ convolutional codes have
been found and reported (Refs. 3, 4, 5, etc.). Up to now, all
the researchers have used the maximum dy criterion or the
criterion of maximum d; together with minimizing the first
few a;’s, for determining goodness of a code in their code
search procedures. These criteria are very valuable, if the
values of operating D,’s are much smaller than 1, since in such
cases Eq. (2) can be well approximated by the first few terms.
Hence, we may. consider the previously reported codes to be
good when the required BER is extremely small. However
when the required BER is in the moderate range of 1072 to
10-8, such criteria may not be good since much more than
the first few times are required for a good approximation to

Eq. (2).

For uses with systems which require BER in the moderate
range, we searched for good rate 1/V convolutional codes by
using a new criterion of minimizing the bit energy to noise
density ratio, Eb/NO, required for a desired value of BER. For
the evaluation of BER, we directly used the transfer function
bound, Eq. (1). In all cases considered we assumed the use of
binary antipodal signaling over the additive white Gaussian
noise (AWGN) channel with no quantization at the channel
output. For the desired values of BER, we picked 10~3 and
1076,

In the next section, the code structures and the transfer
function bounding techniques are briefly reviewed for famili-
zation with our notation. Then the partial code searching
techniques used in this study are presented, where the very
important idea that ‘“‘good codes generate good codes” is
introduced and explained. The code search results are given for
3K <7and 2 <N <8 and are compared with previously
reported codes. As an example, for the K =7 and N =4 case,
our new code can save 0.4 dB in required £,/N, compared to
any previously reported code when the desired value of BER is
1076, We also confirm the benefits of coding bandwidth
expansion with our new codes.

Il. Preliminaries and Notations

A typical nonsystematic, constraint length K, rate 1/V
convolutional encoder is shown in Fig. 1. The code connection
box is often represented by an V X K binary matrix G, which
is called code generator matrix. For a given pair of K and N,
this code generator matrix G determines the performance. Let
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G(n) = (G(n,1),...,G(nk),...,G(#n K)),
n=1,2,....N (3)
Notice that in many reports (e.g., Refs. 4, 5), the code gen-
erator G is represented by (G(i), ..., G(n),...,G(N)) and

G(n)’s are in octal forms. We call this “a regular representa-
tion™ of the code generator. For later use, we also define

gk) =(GEk),...,.G(n k),...,G(N, k),
k=1,2,...,K (4)

The nth bit in 7th output vectory; (see Fig. 1) forn=1, 2,
...,Nandt=1,2,...isgiven by

7

K
yh= Y Gn k) x"k! (5)
k=1
where B is a mod-2 summation, x* €{0,1}, r=1, 2, ... and

x?=0 for t <1 by convention, The “present state” at time ¢,
S, is defined as
St = (xt—K+1,_“,xt—1) (6)

Notice that there are 2X~! (= M) distinct states for any value
of N,

To find code transfer functions, one often uses state
diagrams where nodes represent states and directed branches
represent state transitions. The metric value on the directed
branch from a state to another state (or to itself), assuming the
existence of such a transition, is the product of D to the power
of the Hamming weight of the output vector and Z raised to
the Hamming weight of the input bit, when a binary input
channel is used.

As an illustration, a K =3, &V =2 convolutional encoder,
with one of the best code connections, is depicted in Fig. 2.
For this code,

G = G(l) = (la la l)a G(z) = (])Oa ])s
101
g(l) =(1,1), g(2) =(1,0),
g(3) = (1,1)

and the regular representation of this code generator is (7,5).
The number of states, M, is 4, and its state diagram is shown
in Fig. 3. :



The transfer function T(D, Z) can be represented (Refs. 2
and 6) as

T(D,Z)y =B-(I-4)y'-C @)

where J is the (M- 1) X (M- 1) unit matrix. The (M ~ 1) X (M
- 1) matrix 4, the (M - 1)-dimensional row vector B, and the
(M - 1)-dimensional column vector C can be obtained from
the state diagram as

metric value on the branch from state {
to state /, if there is such a transition

AG7)

= (0, otherwise

B(j) = metric value on the branch from state 0
to state 7, if there is such a transition (8)

= (, otherwise

C({) = metric value on the branch from state i
to state 0, if there is such a transition

= 0, otherwise

where neither state { nor state j is the all zero state (state 0).
For Eq. (1), we need (Refs, 2 and 6)

_..i.)._. :—a_.B_ . -1,
S T(D,2) =% - (U-A)" - C

94

s (J-AY e 22 o7 4)1 .
+B-(I-4) 57 (-4) c 9
For the previous example,
0 D Dz 0
A=z 0o o0 |, B=[D*200], C=]|D?
0 D Dz O
1-DZ D DZ
1
- -1 - - 2
(I-4) =30z Z(1-DZ) 1-DZ DZ
DZ D 1-DZ
5
T(D,Z) = Dz
(1-2DZ)

and

DS
7 T2 s
: (1 - 2DZ)?

The purpose of this report is to find good codes which
minimize the required £,/N, for desired BER = 10~3 or 10~6,
assuming the use of binary antipodal signaling over an AWGN
channel and no channel output quantization. For this special
coding channel, D, and ¢, in Eq. (1) are given by (Refs. 1, 2)

D = exp(- ES/NO) (10)

and
¢, = Q(Z-df-Es/No) exp (df-ES/NO) (11)

where NV, is the one-sided noise power spectral density and £
is the received signal energy per channel bit,

E =r-E (12)

(= E,/N, in our cases) and

Q(w) = f wexp(— £212)  dt/ 2w (13)

w

In the next section the techniques used for the partial code
searches are described.

lll. Code Searching Techniques

For rate 1/N convolutional codes of constraint length X,
the number of possible code generators is 25 V. For exainple,
for K=6 and N =4, the number is 224 which is over ten
million. Furthermore, because of our new criterion, to test the
goodness of code generators, we have to perform matrix
inversions which require considerable amounts of computing
time. These make exhaustive searches prohibitively difficult
except for cases of very small K and/or very small N. For
moderate sizes of K and N, partial searches are necessary. In
order to find good codes with partial searches, some tech-
niques are required for reducing the code generator space
effectively.

First, note that changes in the orders of G(n)’s will not
change the state diagram at all (Fact 1) since the Hamming
weights of the output vectors do not depend on the orders of
their elements. When we use this fact, the required search
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space for code generators reduces by roughly a factor of N
factorial. Also observe that reversing the order of the g(k)’s
gives the same performance (Fact 2) since this is equivalent to
just redefining the state in reverse order, ie., ST=(x*-1, ...,
x*X*1) instead of Eq. (6). This allows one to reduce the
search space by roughly another factor of two. Notice that we
can use these facts.for reducing the search space with no loss
in the chance of finding the best code. There are some other
known facts on equivalence relations between code generators.
However, in our partial code searches, only Facts 1 and 2 were
used since the others are much more difficult to employ.

Recently, another useful observation was made in Ref. 7.
That is, every known good convolutional code satisfies the
following condition (in Ref. 7, it is called “flow conserva-
tion™); for each state in the state diagram, summation of the
exponents of D in all incoming branches must be equal to sum
of those in all outgoing branches. In Fig. 3, we can easily
check that the code satisfies this condition. We noticed that
this condition is automatically satisfied in our cases of rate
1/N if

g() =gK) =(1,1,...,1) (14)

Notice that every reported good code in this class also satisfies
Eq. (14). Hence we restricted our code searches to only those
codes which satisfy Eq. (14). With this restriction, there may
be some possibility of losing the optimum code. However, the
use of Eq. (14) further reduces the required size of code search
space by roughly a factor of 22V,

For a given pair of K and N (at least one of them is small),
we established the code space to be searched using Eq. (14)
and Facts 1 and 2. Then catastrophic codes were deleted, as
were codes for which df was too small. We considered the
value ofdf to be too small if

_ e a
d <d, - "K-NNo (15)

where dg,, Is the maximum free distance of (K, 1/N)
convolutional codes and "x7 is the smallest integer that is
greater than or equal to x. For an example, consider the K = 4
and NV =3 case. The size of the reduced code space is 13 by
using Eq. (14) and Facts 1 and 2, while the size of the original
space is 4096 (=243 = 212) After deleting 5 catastrophic
codes, the following are the code generators to be considered
further, in regular representations with a natural ordering of
the largest element to the left:

(17,17,15),(17,15,15),(17,15,13),(17,15,11),

(15,15,13),(15,15,11),(15,13,11), and (15,11,11)
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In this case, dy,, is 10. Hence (15,11,11) is deleted since its P
is 7.

For the pair of K and NV, we estimated two values of E, /N,
at which we believed the best code(s) could achieve the desired
values of BER. Then for each of the remaining codes, we
calculated the values of BER using Eq. (1) at those two values
of E,/N,. Then we listed the codes with an ordering of the
best one to the top. We consider a code to be better than
another if the sum of the two common logarithmic values of
calculated BER’s is the smaller. Such a listing is illustrated in
Table 1 for the above example of the K =4 and N = 3 case.

By examining these listings for several values of N with a
given (small) K, we made a very useful observation that good
codes generate good codes. That is, for a given K, we can find
good rate 1/(N + 1) codes by extending the code generator of
good rate 1/N codes. For example, from the best (4,1/2) code,
(17,15), we can obtain (17,17,15), (17,15,15),(17,15,13) and
(17,15,11). Notice that all of these (4,1/3) codes are shown in
Table 1. For more insight on this idea, still for K = 4, some of
the upper parts of the listings for V=2 to 5 are shown in
Fig. 4, with lines indicating that the left codes (with smaller V)
generate the right codes. We limited the number of listings in
Fig. 4 5o as not to complicate the figure. Since good codes are
generated by good codes, we do not have to use all the rate
1/N codes for the generation of good rate 1/(V + 1) codes. For
the example of K =4, the 5 best rate 1/3 codes in Table 1 are
generated by the 2 best rate 1/2 codes. Also, the 8 best rate
1/4 codes are obtained from the 4 best rate 1/3 codes, and so
on. Hence when we use this idea, we can reduce the size of the
code space very effectively.

This idea that “good codes generate good codes” can be
supported by the following fact: If a code B is generated by a
noncatastrophic code 4 with free distance d;, , then code B is
also noncatastrophic and its free distance, dyg, is greater than
de by at least 2. The reason for this fact is as follows: The
value of the exponent of D on a branch in the state diagram
for code B is always greater than or equal to the value of the
exponent of D on the same branch in the state diagram for
code 4. Hence the code B cannot be catastrophic, since the
code A is noncatastrophic. Additionally, the values of the
exponents of D on the departing branch from state 0 and on
the incoming branch to state 0 for code B are greater than
those for code A by one [see Eq. (14)and recall that the rate
of code B is 1/(NV + 1) while that of code 4 is 1/N]. Therefore
de - de is always greater than or equal to 2.

Before presenting our code search results, we mention that
we used the following approximation for the matrix inversion
in Eq. (9);



(16)

(g-Ayt = f: A"~ Zv am
m=0

m=0
and we picked the stopping number » such that
E Z A™ (G, /) < 1075 forany m=v  (17)
i j

Notice that the left hand side of Eq. (17) approaches O mono-

tonjcally as m increases. With the approximation of Egs. (16)’

and (17), we have S to 7 digits of accuracy for most values of
E, [N, of interest.

IV. Results, Discussion, and Conclusions

Table 2 summarizes our code search results which give the

best codes in the sense of minimizing the required £, /N, for -

desired BER = 1079 and 1073 (among the searched codes).
Also, previously reported codes (in Refs. 3, 4 and 5) are
compared. Note that some of the previously reported codes
are shown to be the best with our criterion as well. In
particular, the codes reported in Ref. 3 are very good since
only N =2 and 3 cases were considered and the criterion of
maximum d, with minimizing the first few a;’s in Eq. (2) was
used. Note also that, as the code rate gets smaller (or NV gets
larger), the importance of maximum d, diminishes, since the
value of D, gets larger for a given value of £,/N, [see Egs.
(10) and (12)]. An interesting point is that the (7,1/3) code
reported in Ref. 3 happens to be the best for the desired BER
= 1079, despite the fact that the larger df codes were acci-
dently overlooked (as noted in Ref. 4). In Fig. 5, BER versus
E, /N, plots are given for the K = 7 cases.

Using our new codes it is possible to save up to 0.4 dB in
required £,/N, compared to previously reported codes [see
the (7,1/4) case]. To see the gains visually, we plot the
required £, /N, for BER = 1073 and 107 versus NV curves in
Fig. 6. Note that for our new codes, the required £,/N,
becomes smaller as the code rate gets smaller (Fact A) for a
given (large) value of K. This fact A is known as the gain due
to coding bandwidth expansion. That is, we can save in
required signal energy at the expanse of using the larger
bandwidth associated with a lower code rate (with similarly
complex codes'). Note that for the previously found codes,
this fact cannot be observed, since the codes are not

I The complexily of (K, 1/N) convolutional code increases as K
increases and also as N increases. But since K is a much more
important factor for complexity than #, we will consider the codes
with the same K to have similar complexities for any &.

necessarily optimum in the sense of minimizing the required
E,/N,. Note also that for small values of K (3 and 4) this fact
cannot be seen even with our codes. Therefore, we conjectured
that the benefit of coding bandwidth expansion can be
obtained only when enough complexity is allowed.

Now consider the capacity and cutoff rate for further
insight into Fact A. The capacity, C, in the dimension of code
rate [information bits/channel bit] of this coding channel
(binary antipodal signaling over AWGN, no channel output
quantization) is given by (Ref. 2)

C= [-(1+1nzﬁ)/2-fp(y).mp(y)-dy]/mz

(18)
where
p(y) = (exp (- (v - 5)*(2) + exp (- (v + b)*/2)] /\/B
(19)
and
b*|2 = EJN, (20)

The channel coding theorem (Ref. 2) says, with coding,
arbitrary small error rate can be achieved provided that the
data rate R, [information bits/sec] is less than the channel
capacity € [information bits/sec] of the coding channel.
With dimensions of code rate, the above condition can be
restated as

r<C 21
That is, the choice of code rate must be smaller than C, in
theory. Note that C is a function of £ /N, and C‘(Es/No) isa
monotonically increasing function of its argument. Hence its
inverse function exists. Therefore Eq. (21) can be rewritten as

EJN, > C1(n (22)

With Eq. (12),

E N, > ¢ () (23)

We call the right hand side of Eq. (23) “the required £7,/N to
achjeve capacity.” These values were found and plotted in
Fig. 7 as a function of coding bandwidth expansion factor (or
1/code rate 7). Also the cutoff rate of the coding channel R,
[information bits/channel bit] is given by (Ref. 2)

R = 1-log, (1+exp(- £ /N ) (24)

[}
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It is often said (e.g., Ref. 8) that a small enough error rate can
be achieved, with practical coding, provided that R, is less
than the cutoff rate 92, in [information bits/sec]. Or,
equivalently,

r <R, (EJN) (25)

This can likewise be inverted to yield
-1 =. 1, 1-7) _
EJN, >RIMfr=-— - [2079-1]  (26)

We call the right hand side of Eq. (26) “the required £,/ to
achieve cutoff rate.” These values are also plotted in Fig. 7.
These theoretical curves tell us that to be in the region below
the capacity curve is impossible in theory; to be in the region
between the capacity and the cutoff rate curves is possible in

theory but difficult in practice; to be in the region above the.

cutoff rate curve is practically possible. Note that from both
the capacity and the cutoff rate curves, we see that lowering
the code rate gives the benefit of reducing the required E /N,
which is the theoretical view of Fact A.

In the same figure, we have plotted the performances of our
new codes for K = 5, 6 and 7 (from Fig. 6). From comparisons
of the slopes of the curves for BER = 1073 with those for BER
= 1076 cases, we conclude that the benefit of coding
bandwidth expansion is greater when the desired BER is larger.
Also, increasing the system complexity (i.e., increasing K)
provides more gain when the desired BER is smaller, as seen by
the larger spacing between the curves for the BER = 106
cases compared to the BER = 1073 cases. Note also the
similarity between curves for our new codes with those derived
from theory (especially the cutoff rate curve).

In conclusion, we have found good (K, 1/N) codes which
minimize the required £, /N for the desired BER = 10~3 and
1076 for 3 <K <7and 2 <N < 8. For the partial searches of
codes, we used some known facts together with another very
useful idea that “good codes generate good codes.” For many
pairs of K and N, our new codes are shown to save 0.1 to 0.4
dB in required £,/N, for moderate values of required BER,
compares to the previously reported codes. Also, we con-
firmed the benefits of coding bandwidth expansion with our
new codes, whereas the previously reported codes did not
uniformly confirm this property.
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Table 1. Examples of listing of code search results for the
K = 4 and N = 3 case

log, o (BER)

G in octal dp at Ep/N, = t?ltnjl“i)vg
6.0 dB 3.5 dB Values
(17,15, 13) 10 -6.059  -3.070 -9.129
(17, 15, 11) -6.008  ~-3.082 -9.090
(15, 13, 11) 25609  -3.014 -8.623
(17, 15, 15) 10 -5.702  -2.567 -8.289
(15,15, 13) -5.516  -2.510 ~8.026
(15, 15, 11) 8 5422 -2.490 ~7.912
17,17, 15) 8 5279  -2.488 -7.767
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Table 2. Code search results

Required £, /N ,, dB
for desired BER=

e N Code Generator G in d Notes
Regular Representation, octal f
1.E-6 1.E-3

3 2 7,5 S 6.706 4.017 l,a,b
3 3 7,7, 5 8 6.736 4.140 1,a,b
3 4 7,7,17,5 10 6.938 4.354 2

3 4 7,7,5,5 10 6.706 4.017 4,a,b
3 S 7,7,1,5,5 13 6.669 4.055 3,a,b
3 6 7,71,7,1,5,5 16 6.736 4.140 3

3 6 7,7,7,5,5,5 15 6.706 4.017 4,a, b
3 7 7,7,7,7,5,5,5 18 - 6.664 4.035 3,a,b
3 8 7,7,7,7,7,5,5,5 21 6.685 4.080 3,a

3 8 7,7,7,7,5,5,5,5 20 6.706 4.017 4,b

4 2 17,15 6 6.180 3.735 l,a,b
4 3 17,15, 13 10 5.958 3.437 1,a

4 3 17,15, 11 9 5.994 3.427 4,b
4 4 17,15,15,13 13 6.004 3.511 2

4 4 17,15,13, 11 12 5.906 3.286 4,a,b
4 h) 17,17,15,15,13 16 5.991 3.483 3

4 5 17,15,15,13,11 15 5.909 3.332 4,a,b
4 6 17,17,15,15,13,13 20 5.958 3.437 3

4 6 17,17,15,15,13,11 19 5.865 3.325 4,a,b
4 7 17,17,15,15,15,13,13 23 5.974 3.462 3

4 7 17,17,15,15,13,13, 11 22 5.849 3.306 4,a,b
4 8 17,17,17,15,15,15,13,13 26 5.972 3.456 3

4 8 17,17, 15,15,15,13,13,11 25 5.860 3.332 4,a

4 8 17,17,15,15,13,13,11, 11 24 5.906 3.286 4.b

5 2 35,23 7 5.745 3.495 1,a

S 2 31,23 6 §5.845 3.430 4,b

S 3 37,33,25 12 5.395 3.118 l,a,b
5 4 37,35,33,25 16 5.303 2.999 2

5 4 37,35,25,23 15 5.298 3.000 4,a

5 4 35,31,27,23 14 5.317 2.965 4,b

5 5 37,35,33,27,25 20 5.270 2.923 3

5 5 37,35,31,27,25 19 5.243 2.924 4,2

5 5 37, 35, 33, 25, 21 18 5.297 2912 4,b

5 6 37,35,35,33,27,25 24 5.291 2.957 3

5 6 37, 35, 33,27,25,23 23 5.211 2.880 4,a

5 6 37, 35,33,27,25,21 22 5.294 2.867 4,0

5 7 37,35,35,33,27,27,25 28 5.286 2.955 3

5 7 37, 35, 33, 31,27, 25,23 26 5.211 2.845 4,2

5 7 37,35, 33, 27, 25, 23, 21 25 5.256 2.839 4,b

5 8 37,37,35,33,33,27,25,25 32 5.284 2.949 3

5 8 37, 35, 35, 33,31,27,25,23 30 5.211 2.860 4,a

5 8 37, 35,33, 31,27, 2§, 23, 21 28 5.280 2.819 4.b
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Table 2 (contd)

Required £, /N, dB
Code Generator G in for desired BER=
K N Regular Representation, octal df Notes
1.E-6 1.E-3

6 2 75,53 8 5.310 3.289 1

6 2 71,45 8 5.236 3.242 4,a
6 2 75,587 ' 8 5.293 3.211 4,b
6 3 75,53,47 13 4.918 2.900 1,a
6 3 75,67,41 12 5.034 2.854 4,b
6 4 75,71,67,53 18 4.836 2.747 2

6 4 77,13,55,45 18 4.779 2.729 4,a
6 4 77,73,51,45 17 4.807 2.719 4,b
6 5 75,73,71,65,57 22 4.826 2.680 3

6 5 77,73,71,55,45 22 4,742 2.660 4,a
6 5 75,71,65,57,53 22 4.753 2.645 4,b
6 6 75,73,65,57,55,47 27 4.764 2.616 3

6 6 77,73,67,55,51, 45 26 4.694 2.591 4,a
6 6 75,71,65,57,53,47 26 4.704 2.590 4,b
6 7 75,75,67,65,57,53,47 32 4,762 2.630 3

6 7 77,73,67,63,55,51,45 30 4.696 2.565 4,a
6 7 75,71,65,57,53,47,43 29 4.717 2.564 4,b
6 8 75,73,67,65,57,57, 51,47 36 4,728 2.599 3

6 8 77,73,67,63,57,55,51,45 35 4.693 2.552 4,a
6 8 77,73,67,63,55,51,45,41 32 4.772 2.541 4,b
7 2 171,133 10 4.802 3.036 l,a
7 2 161, 133 9 4818 3.035 4,b
7 3 175,145,133 15 4.599 2.706 2

7 3 171,145,133 14 4.489 2.672 1,a
7 3 161, 135,107 13 4.600 2.666 4,b
7 4 163, 147,135,135 20 4.761 2.814 2

7 4 175,151,133,117 20 4.372 2.520 4,a
7 4 173,167,135,111 20 4433 2.511 4,b
7 5 175,147,135,135,131 25 4.562 2.653 3

7 5 175,151,133,127,117 25 4.310 2.444 4,a
7 5 175,165, 151,133,117 25 4.350 2.438 4, b
7 6 173.163,151,137,135,135 30 4.394 2.499 3

7 6 175,171,151,133,127,117 30 4.286 2.387 4,a
7 6 175,165,151, 137,133,117 30 4.307 2.385 4, b
7 7 173,165, 147, 145, 137,135, 135 36 4.381 2456 3

7 7 175,171,155,127,123,117,113 34 4.266 2.356 4,a
7 7 175,171,165, 151, 133,127,117 35 4.282 2.353 4,b
7 8 173,165,153,147,137,135,135,111 40 4.312 2.387 3

7 8 175,171,165,151,133,127,117,113 39 4,251 2.327 4,a,b

Notes:
1: Found by Odenwalder (Ref. 3)
I‘ound by Larsen (Ref. 4)
Found by Daut, et al. (Ref 5)
IFound by the suthor
Minimizes required I:'b//\’o tor desired BER = | .E-6
Minimizes required h‘,,/No tor desired BER = 1. E-3

TR hwn
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Fig. 1. A nonsystematic, constraint length K, rate 1/N convolutional encoder structure

Fig. 2. A best (3,1/2) convolutional encoder



Fig. 3. The state diagram of the encoder in Fig. 2

N=2 N=3 N=4 N=5
(17,15) (17,15,13) (17,15,13,11) (17,15,15,13,11)
(15,13 17,15,11) (17,15,15,11) (17,17,15,13, 11}
15,11) (15,13, 11) (17,15,15,13) (17,17,15,15,11)
{17,15,15) (17,17,15,11) (17,17,15,15,13)
(17,17,15,13) (17,15,13,11,11)
(17,17,15,11,11)

Fig. 4. An example for the idea of “good codes generate good codes,” K =4
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logm(BER)

2.4 2.4 2.8 3.0 3.2 3.4 3.6

3.8 40 4.2 4,4 4.6 4.8
E, N, dB

Fig. 5. BER versus E, /N, curves for K = 7 codes (see Table 2 for the notes)



log 1 0(BER)

1

L1

4.6
]
L 1y | { | ! ! Lo |
22 24 26 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6
E,/N,, dB

Fig. 5 (contd)
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